Problem Set

The 2021 ICPC Asia Topi Online Preliminary Programming Contest Trial Round January 25, 2022.

Instructions

- Please read these instructions below.
- You may access domjudge system using icpc.giki.edu.pk:8012/domjudge link.
- If you have any question regarding the problems, send a clarification from the judges using DOMJudge.
- Students should avoid using internet access and avoid sharing materials to other teams, if copied work will be found it may lead to disqualification.
- Before submitting a run, make sure that it is executable via command line. For Java, it must be executable via "javac" and for GNU C++ via "g++". Java programmers need to remove any "package" statements and source code's file name must be the same as of main class. C++ programmers need to remove any getch() / system("pause") like statements.
- Do not attach input files while submitting a run, only submit/attach source code files, i.e., *.java or *.cpp or *.py.
- Language supported: C/C++, Java and Python3
- Source code file name should not contain white space or special characters.
- You must take input from Console i.e.: Standard Input Stream (stdin in C, cin in C++, System.in in Java, stdin in Python)
- You must print your output to Console i.e.: Standard Output Stream (stdout in C, cout in C++, System.out in Java)
- Please, don't create/open any file for input or output.
- Please strictly meet the output format requirements as described in problem statements, because your program will be auto judged by computer. Your output will be compared with judge's output byte-by-byte and not tolerate even a difference of single byte. So, be aware! Pay special attention to spaces, commas, dots, newlines, decimal places, case sensitivity etc.
- Unless mentioned in some problem, all your programs must meet the time constraint of 5 seconds.
- The decision of judges will be absolutely final.

SAMPLE 1: Pick up students for ICPC Competition.

Atif is driving from Peshawar to the ICPC competition in Lahore. His car has a seating capacity of 7, excluding the driver. On the way, just as he enters the motorway, his mentor Dr. Hussain calls him at 12:00 noon.

Dr. Hussain says,
"Due to a Dharna (sit-in) in Islamabad, all public transport has been stopped and further entry on to the motorway is banned. Please pick-up other students from different motorway interchanges on your way to Lahore, but do not exit as you will not be able to enter again. Students are waiting in ICPC T-shirts at the interchanges from Peshawar to Lahore. However, these students belong to a school that follows strict hierarchy. Once you pick up a higher ranked student, you cannot pick up a lower ranked one afterwards. Their T-shirts are numbered, and you can pick only one student from an interchange."

The road is one-way, so you cannot take a U-turn. You are required to write a program to guide Atif to pick up maximum number of students in his car. For example, if the students are waiting at different interchanges wearing T-shirts numbered $4,10,5,6$, and 8 (arriving in that order), if he picks up the first two, he will not be able to get the other students at $5,6,8$ because they are lower than 10 . However, if he starts picking up students from 5 , he can pick up 3 students. However, in the best case he picks up the first student numbered 4, skips the student with shirt numbered 10 , and picks up the rest of the 3 students. Your program should help him pick up as many students as possible.

Input:

The input consists of multiple test cases. The first line in the input file is the number of test cases, N. Each of the following N lines contain the total students S waiting, the maximum possible priority number P , and a list of students waiting with arrival order.

Output:

For each test case, print a single line that says "Case \#i:", where i is the test case number, followed by the maximum students picked and their order. A sample input and output format is given below:

Sample Input	Sample Output
2	Case \#1:41358
51016358	Case \#2:6123489
7101234859	

SAMPLE 2: Multiply 2 matrices

This sample problem requires you to multiply 2 matrices and give the sum of the resultant matrix. For example, given the matrices \mathbf{M} and \mathbf{N}, you are required to multiply these matrices. Let \mathbf{A} be the resultant matrix. Then your final answer should be the element-wise sum of \mathbf{A}.

Note that the dimensions of \mathbf{M} and \mathbf{N} must match. The only operation allowed is transpose (i.e., changing the rows into columns and columns into rows). If the dimensions of \mathbf{N} do not match with those of \mathbf{M}, you can try to take the transpose of \mathbf{N}.

Example

$\mathbf{M}=$	1	2	3	4	$\mathbf{N}=$	1	0	3	4	A=	26	52	48
	5	6	7	8		5	6	1	8		58	132	96
	9	10	11	12		0	0	0	12		90	212	144

Answer is $26+52+48+58+132+96+90+212+144=858$

Input

The first line in the input is a single number representing the number of cases your program must process. Each of the subsequent lines then states x_{1} and y_{1}, the number of rows and columns, respectively, of the matrix, \mathbf{M}. These values are then followed by the (row-wise) elements of the matrix M. Similarly, (in the same line) we have x_{2} and y_{2}, the number of rows and columns of \mathbf{N} followed by its row-wise entries.

Output

For each test case, print a single line that says "Case \#i:", where i is the test case number followed by the sum of the resultant matrix. If the matrices cannot be multiplied (even after taking transpose), write "Not possible".

Sample Input	Sample Output
2	Case \#1: 858
34123456789101112341034561800012	Case \#2: Not possible
23123456141234	

SAMPLE 3: The number game

In this sample problem, you are required to write a program to input two numbers $-x$ and y. If both numbers are prime, you should add the two numbers. If only one of the numbers is prime, you should output their product. If none of the numbers is a prime, then the output is not possible.

Input

The input consists of multiple test cases. The first line of input is the number of test cases, N. Each of the following N lines contain the two numbers x and y.

Output

For each test case, print a single line that says "Case \#i", where i is the test case number, followed by the answer as follows - if both x and y are prime numbers, output $x+y$; if only one of the numbers is a prime number, output $x \times y$; and, if none of the numbers is a prime number, output "not possible".

Sample Input	Sample Output
2	Case \#1: 5
23	Case \#2: 12
34	

SAMPLE 4: Denominations

Time limit: 5 seconds

Faisal works as a cashier/teller at a local bank located in a not-so-well-off neighborhood. Customers come along all day long, making a good turn over. Every once in a while, an old lady of the neighborhood would cash a cheque. She requests him to give her the minimum number of currency notes, down to 10 -rupee bills. For the rest, he gives her toffees that the old lady would give to her children.

Input

The first line of the input contains n, which is the number of test cases $(1 \leq n \leq 1000)$. Each subsequent line contains the amount to be given to the old lady (in the range $10-1,000,000$).

Output

Each line consists of the test case given by "Case \#i: ", where i is the test case number. For each test case, output the minimum count of each denomination starting from the largest non-zero denomination. It should then list all the remaining denominations, even if zero, as shown in the sample output. The possible denominations are 5000, $1000,500,200,100,50,20$, and 10 , respectively.

Sample input	Sample Output
2	Case \#1: 4x1000, 0x500, 1×200, 0x100, 1×50, 1×20, 0x10
4270	Case \#2: $1 \times 200,1 \times 100,0 \times 50,1 \times 20,0 \times 10$
320	

